

Certificação Profissional em Avaliação de Risco Biológico

Conteúdo do Exame, Questões de Amostra e Referências

A Certificação Profissional (PC) em Avaliação de Risco Biológico da IFBA identifica indivíduos com competências comprovadas na condução de avaliações de risco em biossegurança e bioproteção de forma estruturada e sistemática. Os profissionais que possuem esta certificação demonstram conhecimento e habilidades avançadas em grau suficiente para implementar uma abordagem de tomada de decisão baseada em risco, com o objetivo de mitigar riscos biológicos em laboratórios clínicos, laboratórios de saúde pública e saúde animal, laboratórios de pesquisa e ambientes de assistência à saúde. Os candidatos que desejam obter esta certificação devem primeiro concluir com êxito, como pré-requisito, a Certificação Profissional em Gestão de Biorrisco (*PC in Biorisk Management*) antes de estarem elegíveis ao exame.

A Certificação Profissional em Avaliação de Risco Biológico é voltada a uma ampla gama de profissionais que trabalham com ou próximos a materiais biológicos, incluindo gestores de biorrisco e oficiais de biossegurança, cientistas e técnicos de laboratório, pesquisadores, profissionais de resposta a surtos de doenças, pessoal de operações e manutenção de instalações, engenheiros e arquitetos de biocontenção, educadores, consultores e formuladores de políticas. O Corpo de Conhecimento (*Body of Knowledge* – BOK) apresentado abaixo identifica seis domínios (áreas temáticas) e 54 declarações de conhecimento/tarefa que definem as competências necessárias para a certificação em Avaliação de Risco. O conteúdo do exame é baseado neste BOK, e cada questão do exame está vinculada a uma das declarações listadas a seguir.

Domínio A – Fundamentos da Avaliação de Risco Biológico

- Identificar como a avaliação de risco é fundamental para informar o processo de tomada de decisão na redução e mitigação de riscos provenientes de agentes biológicos, materiais e informações correlatas;
- 2. Identificar como abordagens de biossegurança e bioproteção baseadas em risco permitem a alocação eficaz de tempo e recursos, promovendo medidas de mitigação locais, práticas e sustentáveis;
- 3. Explicar por que a classificação de agentes biológicos e as medidas de controle podem variar de um laboratório para outro, de uma instituição para outra, de um país para outro e até entre regiões;
- 4. Reconhecer a importância de realizar avaliações de risco com base em informações empíricas, de forma padronizada, consistente e reproduzível;
- 5. Definir e identificar as diferenças, vantagens e desvantagens do uso de métodos qualitativos, semiquantitativos e quantitativos;

- 6. Reconhecer técnicas de análise prospectiva de perigos (por exemplo, SWIFT, HAZOP, FMEA, HEART, Diagrama de Espinha de Peixe e Bowtie) e estruturas de avaliação de risco (como o modelo de Rasmussen, BioRAM, WHO VRAM, THIRA), bem como estas ferramentas possam ser adaptadas e suas limitações para uso em ambientes laboratoriais e de saúde;
- 7. Identificar como avaliações de risco baseadas na experiência individual (isto é, baseado inteiramente na experiência pessoal do indivíduo que o realiza) podem subestimar eventos raros com consequências catastróficas e/ou riscos futuros imprevistos;
- 8. Identificar o papel do viés humano e da percepção de risco na estimativa e avaliação de riscos sob incerteza (p. ex., quando há falta de informação ou conhecimento para fundamentar o processo de avaliação de risco);
- 9. Explicar cada etapa do processo de avaliação de risco (p. ex.: na coleta de informações, identificação de perigos, avaliação de riscos, desenvolvimento da estratégia de controle, seleção e validação de medidas de controle que impactam na probabilidade e/ou consequência, validação, revisão e reavaliação);
- 10. Explicar como coletar e inserir dados de qualidade no processo de avaliação de risco em biossegurança e bioproteção;
- 11. Avaliar fatores que afetam a probabilidade e as consequências de um resultado negativo, como exposição, uso indevido ou liberação acidental/intencional de agentes biológicos;
- 12. Avaliar riscos com múltiplos tipos e valores possíveis de probabilidade e consequência;
- 13. Identificar relações lineares e não lineares entre probabilidade e consequência.
- 14. Explicar como plotar uma matriz de avaliação de risco, identificar suas limitações de uso e descrever abordagens de matrizes de risco alternativas;
- 15. Explicar como uma medida de controle pode ser aplicada à probabilidade e/ou às consequências para reduzir o risco a um nível residual aceitável;
- 16. Identificar os fatores que influenciam a aceitação de risco e o impacto da percepção de risco nas estratégias de controle;
- 17. Explicar quem deve participar na biossegurança e bioproteção do processo de avaliação de risco, quando buscar expertise externa, e como garantir e comunicar o nível adequado de consciência, treinamento e competência para implementar e revisar estratégias de controle.

Domínio B – Implementação da Avaliação de Risco em Biossegurança

- 18. Avaliar os tipos e características dos agentes e materiais biológicos, bem como os efeitos adversos à saúde humana, animal e ambiental que podem causar;
- 19. Identificar fontes potenciais de agentes biológicos e situações procedimentais que apresentem potencial de causar dano;
- 20. Determinar a probabilidade de exposição ou liberação de um agente biológico durante o trabalho e as consequências associadas;
- 21. Explicar quais dados devem ser coletados e como estabelecer o risco do trabalho a ser realizado no contexto das condições locais, decidindo se tais riscos são aceitáveis ou não;
- 22. Identificar como diferentes medidas de controle de biossegurança tratam fatores específicos que contribuem para a probabilidade e/ou consequência de uma potencial exposição ou liberação;
- 23. Explicar como selecionar, implementar e validar medidas de controle apropriadas e proporcionais, necessárias para trazer o risco a um nível aceitável, permitindo que o trabalho prossiga com segurança;
- 24. Identificar como métodos alternativos de trabalho podem substituir atividades de alto risco por outras de baixo risco, reduzindo o risco inicial antes da aplicação de medidas de controle adicionais;
- 25. Avaliar se as medidas de controle de biossegurança implementadas são eficazes, confiáveis e sustentáveis no longo prazo;

Domínio C – Implementação da Avaliação de Risco em Bioproteção

- 26. Explicar como identificar e avaliar o ambiente de ameaças que pode impactar uma organização que trabalha com agentes e materiais biológicos;
- 27. Identificar e avaliar ativos com potencial de uso duplo, tecnologias emergentes e ativos que possam ser utilizados para fins maliciosos, causando doenças em populações humanas ou animais, ou provocando medo público;
- 28. Identificar e avaliar riscos de bioproteção relacionados a ativos tangíveis (ex.: patógenos, equipamentos, animais), intangíveis (ex.: informações científicas, reputação organizacional) e pessoas (ex.: equipe, cientistas, estudantes, contratados);
- Explicar como desenvolver e priorizar um inventário de agentes e materiais biológicos com base em suas características e no impacto potencial da perda ou comprometimento desses ativos;
- 30. Explicar como realizar uma avaliação de vulnerabilidades, identificando eventos relacionados à bioproteção que possam resultar em perda, roubo, uso indevido, desvio ou liberação intencional não autorizada de materiais biológicos e informações associadas;

- 31. Identificar adversários internos e externos que possuam motivação, meios e capacidade para executar um evento de bioproteção, e como esses adversários podem explorar vulnerabilidades ou contornar medidas de mitigação da organização;
- 32. Avaliar a probabilidade e as consequências de um evento de bioproteção sobre a saúde pública, saúde animal, meio ambiente e sobre a própria organização;
- 33. Explicar como selecionar e implementar medidas de controle de bioproteção eficazes, apropriadas e proporcionais em todas as etapas do gerenciamento de incidentes (prevenção, detecção, resposta e recuperação);
- Explicar como alinhar medidas inter-relacionadas de biossegurança e bioproteção, especialmente quando existirem potenciais conflitos ou sobreposições entre elas;

Domínio D – Infraestrutura de Contenção Biológica Baseada em Risco

- 35. Explicar a abordagem baseada em risco para o projeto de infraestrutura, garantindo que as instalações sejam adaptadas aos riscos locais e aos recursos disponíveis, proporcionando proteção equilibrada e proporcional ao risco, sem comprometer a biossegurança e a bioproteção;
- 36. Explicar como os processos de planejamento e desenvolvimento de design laboratorial devem se basear em questões contextuais locais, recursos disponíveis e avaliações de risco locais em biossegurança e bioproteção;
- 37. Identificar como equilibrar soluções de engenharia altamente técnicas, que exigem manutenção terceirizada, com soluções simples, práticas e econômicas, que possam ser mantidas e sustentáveis localmente ao longo de todo o ciclo de vida da instalação;
- 38. Identificar o papel dos fatores humanos e dos procedimentos operacionais padrão (POPs) no processo de avaliação de risco, em comparação à infraestrutura física e aos equipamentos, como componentes críticos para conferir segurança por meio de treinamento e práticas de proficiência adequados;

Domínio E – Laboratórios Clínicos, Patógenos Novos e Perigosos

- 39. Identificar perigos biológicos, avaliar riscos de biossegurança e bioproteção e implementar medidas de mitigação em todas as etapas do processo de análise clínica: coleta e transporte de amostras, processamento e manipulação de amostras, microscopia, ensaios moleculares e não moleculares, cultivo, controle de inventário, descontaminação e descarte;
- 40. Avaliar e mitigar riscos quando uma amostra clínica potencialmente pode conter outros agentes biológicos além daquele testado;
- 41. Identificar o princípio das práticas de precaução, aplicando um conjunto de medidas em situações em que o agente infeccioso ainda não é conhecido, e explicar como adotar precauções específicas conforme o diagnóstico se torna mais claro;
- 42. Identificar e avaliar os riscos relacionados ao uso de equipamentos e insumos de diagnóstico clínico, determinando os controles necessários para mitigá-los;

- 43. Identificar o impacto dos fatores humanos (como falta de familiaridade com patógenos, desconhecimento do risco de infecções laboratoriais, sobrecarga de trabalho, negligência ou complacência) na gestão dos riscos biológicos em laboratórios clínicos;
- 44. Avaliar e controlar riscos associados à coleta e transporte de amostras biológicas em campo e entre laboratórios durante um surto de doença;
- 45. Explicar como identificar riscos associados à incerteza científica sobre a gravidade do perigo biológico, seus potenciais danos ou a probabilidade de afetar trabalhadores (como no início de surtos com dados limitados ou conflitantes relacionados as características do perigo biológico);
- 46. Explicar como avaliar riscos remotamente durante crises, preencher lacunas de conhecimento e aplicar o princípio da precaução, considerando a hierarquia das medidas de controle;

Domínio F – Engenharia Genética, Biologia Sintética e Biotecnologias Emergentes

- 47. Identificar marcos internacionais e diretrizes aplicáveis à engenharia genética, edição genômica, biologia sintética e outras biotecnologias em rápida evolução, incluindo o potencial de uso indevido dessas tecnologias;
- 48. Identificar e avaliar fatores que influenciam o risco de uso acidental ou deliberado indevido dessas tecnologias emergentes (p. ex., tecnologias de engenharia genética, biologia sintética e edição gênica) em níveis institucional (organizacional), nacional e internacional;
- 49. Identificar e avaliar efeitos adversos potenciais, tanto do uso acidental quanto do uso deliberado indevido de tecnologias emergentes (p. ex., tecnologias de engenharia genética, biologia sintética e edição gênica), sobre a saúde humana, animal e ambiental;
- 50. Determinar em qual estágio da pesquisa deve-se avaliar o potencial de duplo uso das tecnologias emergentes (p. ex., planejamento, solicitação de financiamento, execução da pesquisa, publicação);
- 51. Identificar medidas de controle de risco para prevenir o uso indevido acidental ou intencional de tecnologias emergentes (p. ex., tecnologias de engenharia genética, biologia sintética e edição gênica);
- 52. Identificar qualquer potencial de alto alto grau de complexidade e incerteza associado à biologia sintética e outras biotecnologias de rápido desenvolvimento sem comparativos prévios na predição de riscos;
- 53. Identificar como equilibrar medidas de biossegurança e bioproteção, e quaisquer conflitos relacionados enquanto se promovem avanços científicos e tecnológicos no campo da engenharia genética e biologia sintética;
- 54. Identificar e avaliar abordagens estratégicas e ferramentas para promover a conscientização situacional entre profissionais das ciências da vida sobre os riscos de uso indevido de tecnologias emergentes.

Diagrama do Exame

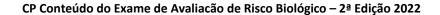

A tabela a seguir representa a porcentagem de perguntas, em cada domínio, incluídas no exame:

Diagrama do Exame Certificação Profissional em Avaliação de Riscos Pontuação de aprovação - 70%		
Domínio	Número de Questões	
A) Fundamentos da Avaliação de Risco Biológico	26	
B) Implementação da Avaliação de Risco em Biossegurança	16	
C) Implementação da Avaliação de Risco em Bioproteção	16	
D) Infraestrutura de Contenção Biológica Baseada em Risco	8	
E) Laboratórios Clínicos, Patógenos Novos e Perigosos	15	
F) Engenharia Genética, Biologia Sintética e Biotecnologias Emergentes	9	

Exemplos de questões

Para familiarizar os candidatos com o formato e a natureza das questões do exame, são apresentados abaixo exemplos de perguntas de múltipla escolha. O asterisco (*) indica a resposta correta.

- 1. A abordagem baseada em risco para biossegurança e bioproteção em um laboratório:
 - a) eliminará todos os riscos biológicos, permitindo que o trabalho prossiga de forma totalmente segura e protegida.
 - b) utilizará todos os recursos disponíveis para impedir a exposição do pessoal do laboratório a materiais biológicos.
 - c) priorizará os recursos disponíveis em função dos riscos com maior probabilidade e consequências*.
 - d) padronizará as medidas de controle de risco para todos os laboratórios que manipulam materiais biológicos.
- 2. Qual das seguintes afirmações é VERDADEIRA?
 - a) Avaliações de risco qualitativas exigem grande volume de dados para atribuir valores numéricos à probabilidade e à consequência.
 - b) Avaliações de risco qualitativas buscam maximizar a objetividade por meio de linguagem descritiva ou escalas intervalares para classificar probabilidade e consequências.
 - c) Exemplos de dados de alta qualidade para avaliações de risco de patógenos emergentes incluem opiniões de especialistas e literatura sem referência.
 - d) No início de um surto de doença emergente, dados médicos e epidemiológicos de pacientes podem ser usados para apoiar o processo de avaliação de risco*.

3. A análise	fornece um método estruturado para avaliar critérios
diversos e potencialm	ente conflitantes no processo de análise de risco.

- a) prospectiva de perigos (prospective harzard).
- b) decisões multicritérios (multi-criteria decision)*.
- c) espinha de peixe (fishbone).
- d) efeito do modo de falha (failure-mode fail)
- 4. Ao conduzir uma avaliação de risco em biossegurança no laboratório, qual dos seguintes fatores MAIS afeta as consequências e a severidade do dano?
 - a) Os procedimentos operacionais padrão que são seguidos no laboratório.
 - b) A motivação de adversários potenciais que possam desejar a utilização de agentes biológicos para fins maliciosos.
 - c) As propriedades patogênicas inerentes do agente biológico avaliado*.
 - d) As características de desenho do projeto das instalações laboratoriais.
- 5. Quando da condução de pesquisas com tecnologias emergentes para as quais há informação limitada disponível é recomendado que _______. Selecione a MELHOR escolha.
 - a) regulamentos internacionais que proíbam esse tipo de pesquisa seja desenvolvida até que mais informações estejam disponíveis.
 - b) o princípio da precaução seja aplicado para interromper a pesquisa até que todos os riscos potenciais possam ser identificados e eliminados.
 - c) medidas de mitigação de risco sejam adotadas com base em dados substitutivos ou evidências indiretas, a fim de preencher lacunas de conhecimento até que mais informações sejam obtidas ao longo do tempo*.
 - d) a pesquisa seja permitida para prosseguir sem quaisquer medidas adicionais de mitigação de risco.

Referências

Algumas sugestões de preparação para o exame podem incluir, mas não se limitar às, seguintes fontes de referência:

- 1. <u>Laboratory Biosafety Manual</u>. 4th edition. World Health Organization. 2020
- 2. <u>Laboratory Biosafety Manual Monograph: Risk Assessment</u>. 1st edition. World Health Organization. 2020
- 3. <u>Laboratory Biosafety Manual Monograph: Outbreak Preparedness & Resilience.</u> 1st edition. World Health Organization. 2020
- 4. <u>Laboratory Biosafety and Biosecurity Risk Assessment Technical Guidance Document</u>. Sandia National Laboratories. 2014
- 5. Biosafety Risk Assessment Methodology. Sandia National Laboratories. 2010
- 6. <u>Standard for Managing Biological Risk in the Veterinary Laboratory and Animal Facilities.</u> World Organization for Animal Health. 2015
- 7. Pathogen Risk Assessment Guideline. Public Health Agency of Canada. 2018
- 8. Conducting a Biosecurity Risk Assessment. Public Health Agency of Canada. 2018
- 9. <u>Biorisk Management for Laboratories and Other Organizations</u>. ISO 35001. International Standards Organization. 2019
- 10. <u>Guidelines for Responsible Conduct in Veterinary Research: Identifying, Assessing and</u>
 Managing Dual Use. World Organization for Animal Health. 2019
- 11. <u>Culture of Biosafety, Biosecurity, and Responsible Conduct in the Life Sciences (Self)</u>
 <u>Assessment Framework</u>. International Working Group on Strengthening the Culture of Biosafety, Biosecurity, and Responsible Conduct in the Life Sciences. 2020.
- 12. <u>Assessing the Security Implications of Genome Editing Technology: Report of an International Workshop</u>. The Interacademy Partnership. 2017
- 13. <u>Recommendations for the Evaluation and Oversight of Proposed Gain-of-Function</u>
 <u>Research</u>. National Science Advisory Board for Biosecurity. 2016